
Journal of Computational Physics 176, 276–294 (2002)

doi:10.1006/jcph.2001.6978, available online at http://www.idealibrary.com on

Dust Dynamics in Protoplanetary Disks: Parallel
Computing with PVM

Carlos de la Fuente Marcos,∗ Pierre Barge,† and Raúl de la Fuente Marcos∗
∗Universidad Complutense de Madrid, E-28040 Madrid, Spain; and †Laboratoire d’Astrophysique

de Marseille, B.P. 8, 13376 Marseille Cédex 12, France
E-mail: nbplanet@ucmail.ucm.es, pierre.barge@astrsp-mrs.fr, rfuente@ucmail.ucm.es

Received July 13, 2001; revised November 5, 2001

We describe a parallel version of our high-order-accuracy particle-mesh code for
the simulation of collisionless protoplanetary disks. We use this code to carry out a
massively parallel, two-dimensional, time-dependent, numerical simulation, which
includes dust particles, to study the potential role of large-scale, gaseous vortices in
protoplanetary disks. This noncollisional problem is easy to parallelize on message-
passing multicomputer architectures. We performed the simulations on a cache-
coherent nonuniform memory access Origin 2000 machine, using both the parallel
virtual machine (PVM) and message-passing interface (MPI) message-passing li-
braries. Our performance analysis suggests that, for our problem, PVM is about
25% faster than MPI. Using PVM and MPI made it possible to reduce CPU time
and increase code performance. This allows for simulations with a large number of
particles (N ∼ 105–106) in reasonable CPU times. The performances of our imple-
mentation of the parallel code on an Origin 2000 supercomputer are presented and
discussed. They exhibit very good speedup behavior and low load unbalancing. Our
results confirm that giant gaseous vortices can play a dominant role in giant planet
formation. c© 2002 Elsevier Science (USA)

Key Words: accretion; accretion disks; MPI; parallel computing; planetary systems;
PVM; solar system formation; turbulence.

1. INTRODUCTION

Astrophysics is a particularly fruitful field for the application of computer simulation
because the systems under study—protoplanetary disks, minor bodies, planets, stars, and
galaxies—are not adaptable to controlled laboratory experimentation. In astrophysics, ex-
periments are mainly carried out by simulating a system on a computer and performing
experiments with that simulation. Astrophysical particle systems divide into two main

276

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.

PROTOPLANETARY DISKS: PARALLEL COMPUTING 277

classes: collisional and collisionless. The dynamical evolution of collisional systems is
driven by two-body (or higher order) interactions as in star clusters. In contrast, the mo-
tion of a particle in a collisionless system is predominantly controlled by the local mean
gravitational field and scarcely influenced at all by the particular distribution of other
particles in its neighborhood [1]. In fact, if one observes the motion of particles in a
collisionless system, they may appear to drift through each other like ghosts as they
respond to the mean field. The particles do not react with each other; there are nei-
ther sharp changes of direction nor the formation of binary or higher multiplicity
systems.

The evolution of a collisionless system is determined by the mean mass density. In a
purely gravitational collisionless system the distribution of the masses of individual par-
ticles has no influence on the evolution of the local mean quantities. Although the ro-
tation curve of a protoplanetary disk is dominated by a central mass (the star), its evo-
lution is strongly affected by drag forces. In this environment, the dynamical behavior
of a particle depends on the ratio of its response time against drag to its orbital pe-
riod but not on the collisions with other particles. For systems with a fixed total mass
the binary collision rate is inversely proportional to the number of massive objects N
into which mass is divided. If N is doubled, although the number of scattering centers
is also doubled, the force between any interacting pair of particles is divided by four
as force is proportional to the square of the mass. The net result is that the total col-
lisional effect is halved. If the system is composed of a large number of massive ob-
jects, as in a protoplanetary disk where N ≈ 1026 metric particles, the interparticle force
is only comparable to the solar attraction if the interparticle distance is about 1 mm, but
the characteristic interparticle distance is several orders of magnitude larger. Besides, the
drag force is much more important than the interparticle gravitational force. For these
reasons young protoplanetary disks are described as collisionless systems. On the other
hand, such disks are thought to be turbulent during a period of their lives so as to ex-
plain the mass and angular momentum evolution and the constraints deduced from mete-
oritic data. Barge and Sommeria [2] suggested that large-scale coherent structures grow
in these turbulent disks by analogy with what happens in two-dimensional fluid dynam-
ics in which organized structures are known to emerge from random turbulence in ro-
tating shear flows (for example, Jupiter’s Great Red Spot). They found that large-scale
anticyclonic vortices can capture and concentrate very efficiently the solid material of
a protoplanetary disk, and they claimed that these vortices could play a central role in
the first stages of planet formation. Chavanis [3] improved on this research by using
an exact vortex solution of the incompressible two-dimensional Euler equation and the
epicyclic approximation. This early work has recently been continued by de la Fuente
Marcos and Barge [4] using sequential simulations. In this paper we show that noncolli-
sional problems like the one described above match up very well against parallel program-
ming on multicomputer architectures in which all of the processors are essentially running
replicated sets of the same instructions and just passing information as required by the
computation.

This paper is organized as follows. In Section 2 we describe the hardware used in this
research. The software making the parallelization feasible is considered in Section 3. The
physical model included in the code is analyzed in Section 4. In Section 5 we describe the
code as well as our parallelization approach. The results are presented in Section 6 and our
conclusions are outlined in Section 7.

278 DE LA FUENTE MARCOS, BARGE, AND DE LA FUENTE MARCOS

2. HARDWARE

Since the early 1980s, the two major parallel architectures—shared-memory multiproces-
sors and message-passing multicomputers—have proven optimum for different problems.
The shared-memory machines have the reputation of being easier to program. The mem-
ory in this type of architecture is called shared memory because the data are stored as a
single large structure, as on any conventional computer. However, as the number of pro-
cessors increases, the probability of a conflict occurring between two or more processors
simultaneously attempting to access the same data gets higher. In contrast, message-passing
multicomputer architectures can be scaled up to tens of thousands of processors because
the memory in this type of architecture is associated with each individual processor. As a
result, the data set must be broken up, or decomposed, and distributed to the memory of
each processor with a set of program instructions telling the processor what to do. Data
are shared between processors in the form of packets, or messages, that are sent from one
node’s memory to another via circuitry.

During the past few years, the computer industry has been yearning for an extensi-
ble systems architecture to replace symmetric multiprocessor (SMP) systems. With an
understanding of the limitations of bus-based architectures, Silicon Graphics Inc., (SGI) set
out to develop a revolutionary computer architecture that would combine the best features
yet overcome the performance obstacles and bottlenecks of SMP and massively parallel
processor (MPP) designs. In 1996, SGI announced and started shipping the Origin line of
servers, establishing cache coherent nonuniform memory access (CC-NUMA) as a viable
server platform. This architecture is not reliant on a bus but rather is designed using a
series of nonblocking crossbar switches as an interconnection fabric, essentially adding
incremental I/O as the system configuration grows. The Origin 2000 is CC-NUMA
programmable as shared memory (SM) with a mixture of MPPs and SMPs. This spe-
cial architecture is called S2MP (scalable SMP) and it uses distributed shared memory
(DSM). The Origin 2000 machines are based on the architecture of the scalable node 0
system. Each node board contains two MIPS RISC 64-bit R10000 processors with as-
sociated cache and memory. In an Origin 2000 machine, a number of processing nodes
are linked together by an interconnection fabric called NUMA-link (SGI CC-NUMA
hypercube). The interconnection fabric is a mesh of multiple, dynamically allocable
transactions, allowing connections to be made from processor to processor as needed.
As processors are added to the system, the bandwidth between processors and local
memory remains constant, allowing for truly scalable performance as the system
grows.

3. PARALLEL PROGRAMMING WITH PVM

The parallel virtual machine (PVM) is a software package developed by Oak Ridge
National Laboratory, the University of Tennessee, and Emory University. It was initially
conceived to enable a heterogeneous collection of computers linked by a network to func-
tion as a single large parallel computer and to be used as a coherent and flexible concurrent
computation resource. The individual computers may be shared with local memory mul-
tiprocessors, vector supercomputers, specialized graphics engines, or scalar workstations.
The PVM project began in the summer of 1989 at Oak Ridge National Laboratory. Version 2
of PVM was written at the University of Tennessee and released in March 1991. During

PROTOPLANETARY DISKS: PARALLEL COMPUTING 279

the following year, PVM began to be used in many scientific applications. Version 3 [5]
was a full rewrite completed in February 1993. During the past few years, SGI and Cray
Research Inc. have taken that implementation and extended it in several ways. PVM is
able to run on the SGI Origin family of supercomputers. This computer family runs the
UNIX-like operating system IRIX. The message-passing toolkit (MPT) for IRIX is a soft-
ware package that supports interprocess data exchange for applications that use concurrent,
cooperating processes on a single host or on multiple hosts. Data exchange is done through
message passing, which is the use of library calls to request data delivery from one process
to another or between groups of processes. The MPT 1.5 package (used in this research)
contains the following components and the appropriate accompanying documentation: (1)
PVM, (2) message-passing interface (MPI) [6], and (3) logically shared, distributed memory
(SHMEM) data-passing routines. The MPT version of PVM has enhancements to enable
the use of POSIX shared memory, which provides greater flexibility and robustness than
offered by the previously used IRIX shared arenas. Default communication is based on
transmission control protocol (TCP) sockets between processes on the same system and
between different systems. Transfer speeds are relatively slow when sockets are used as
the mechanism for communication. The MPT version of PVM also provides alternative
mechanisms for communication. The socket communication has been optimized to utilize
high-speed network devices more effectively. PVM has been integrated with the network
queuing environment (NQE) so that it is possible to use PVM within a batch job in isolation
from other PVM jobs.

SGI provides versions of PVM to support a variety of Needs. These versions provide
users with a single subroutine interface for message-passing programming; this interface
is portable and a de facto standard. PVM is available from its developers as public domain
software and is being made available as vendor-supported software by SGI and a number of
other computer vendors. PVM is supported on all SGI systems. The PVM software system
consists of a library and commands that support PVM [5]. The PVM software provided
by SGI was developed specifically for each system on which it runs. It is feasible to use
PVM to communicate among processes on a number of different computer systems. The
following characteristics apply to all PVM system combinations: (1) the user building an
executable file for use on an SGI system links with a single PVM library, (2) the same
standard library syntax and behavior are supported, regardless of how PVM is used, and (3)
the performance of PVM in different basic scenarios differs significantly; this difference
influences the communications strategy that should be used.

The following PVM terminology is used in this work: task, the UNIX process that uses
PVM for communications; application, a number of tasks running the same program; and
process, the entity running on the IRIX operating system or another UNIX system. PVM
comprises a daemon (pvmd3) and a library of PVM interface routines (libpvm3.a). The
daemon starts up PVM and constructs a virtual machine. User programs written in C, C++,
or Fortran access PVM through libpvm3.a.

The PVM software system has been used in many computational applications and for
solving large-scale problems in science, industry, and business since its initial release
in 1991. PVM has been used in astronomical data analysis software since 1996. Mo
et al. [7] implemented an optical prescription retrieval code using PVM in a mixed ar-
chitecture network to use at Space Telescope Science Institute (STScI) and Boden et al.
[8] developed a massively parallel, spatially variant maximum likelihood image restora-
tion algorithm, also at STScI, to process images from the Hubble space telescope (HST)

280 DE LA FUENTE MARCOS, BARGE, AND DE LA FUENTE MARCOS

wide-field planetary cameras. PVM has recently been used in astrophysics to study
cosmological problems. Their Cosmos code by Ricker et al. [9] has been implemented
for parallel computers using the PVM library, and it features a modular design which sim-
plifies the addition of new physics and the configuration of the code for different types of
problems. Another recent application of PVM in an astrophysical context was developed
by Viturro and Carpintero [10]. They developed a parallelized tree code to simulate colli-
sions of galaxies by clusters of personal computers using PVM as message-passing library
software.

4. PHYSICAL MODEL

Many newly formed stars appear to possess residual protostellar disks of solar system
size, which are likely to originate from the collapse of slowly rotating cloud cores like
those observed in nearby dark clouds. The later evolution of such disks governs both
the final stages of star formation and the formation of planetary systems. For model-
ing the dust disk, we use a thin disk model of the nebula, in which the surface den-
sities (both for gas and particles) and the temperature are given by decreasing power
laws. Hydrostatic equilibrium in the vertical direction is also adopted. Under the stan-
dard assumption of hydrostatic equilibrium in the thickness H of the nebula, H ≈ Cs�,
where Cs is the sound velocity and � is the Keplerian angular velocity. In such a pro-
toplanetary disk, for a given particle there is competition between gas drag and iner-
tia. Details about the nebula model used in the calculations are shown in the next
section.

The motion equations for a solid particle submitted to the attraction of the star and to the
friction drag of the nebula gas are

d2�r
dt2

= −G M0
�r

r3
− �u

Ts
+ ��, (1)

where �u = �v − �Vg , �Vg is the gas velocity, and �� is the contribution of the self-gravity of
the disk. Ts is the stopping time, i.e., a characteristic friction time scale which depends
not only on the mass and velocity of the particles but also on the distance to the star. The
drag regime depends on the size of the particles relative to the mean free path of the gas
molecules (λ ≈ m Hµ/ρgσH2 , σH2 ≈ 2 × 10−9 m2),

Ts =



ρps
ρgCs

if s ≤ 9/4λ (Epstein regime),

8ρps
3ρgCDu otherwise (Stokes regime),

(2)

where ρg is the density of the gas, Cs is the thermal velocity, ρp is the density of the solid
material, s is the radius of the particle, and CD is a nondimensional coefficient which depends
on the Reynolds number, Re = 2suρg/ηg (ηg is the viscosity of the gas, ηg = 1/2ρgλCs).
The thermal velocity is given by

√
8κT/πµmH, where κ is the Boltzmann constant, µ is

the mean molecular mass (µ ≈ 2.34), and mH is the mass of a hydrogen atom. Following

PROTOPLANETARY DISKS: PARALLEL COMPUTING 281

Weidenschilling [11], the dimensionless drag coefficient is given by

CD =




24
Re if Re < 1,

24
Re0.6 if 1 < Re < 800,

0.44 if Re > 800.

(3)

The particles inside the disk are assumed to follow a Safronov initial mass function,
ξ(m) = n exp(−m/〈m〉) [12], where ξ(m) is the number of particles per unit mass interval.
This is conveniently represented by the mass generating function

m(X) = ml − 〈m〉 ln
[
1 − (

1 − e((ml−mu)/〈m〉))X
]
, (4)

where ml is the minimum mass, mu is the maximum, 〈m〉 is the mean mass, X is a random
variable uniformly distributed in the interval [0, 1], and d X/dm ∝ ξ(m) (〈m〉 => ml). The
mass generating function has been computed in the way described, for example, in Kroupa,
Gilmore, and Tout [13].

4.1. Protoplanetary Nebula Properties

Before solving the motion equations (1), we need to specify the temperature and sur-
face density profiles of the basic unperturbed state. For the purpose of this work, we have
adopted a simple formulation for the physical characteristics of the protoplanetary neb-
ula. We take the total mass density σ(r) and temperature T (r) of the disk to be of the
form

σ(r) = σo

(
r

ro

)−p

, (5)

T (r) = To

(
L

L�

)q/2(r

ro

)−q

, (6)

where ro is a reference radius with Keplerian orbital frequency �o (
√

G Mo/r3
o), temperature

To, mass density σo, and velocity vK , and L is the luminosity of the star in solar units. We
assume that the disk is vertically isothermal at temperature T (r), and we take L = 1 L�
throughout the paper.

The gas vertical scale height H is

H = c/� =
√

2R

µ
T 1/2�−1. (7)

The average gas density ρg is

ρg = σ

2H
= ρo

(
r

ro

)−p+q/2−3/2

, (8)

where ρo = √
µ/8RToσo�o. For the purpose of this paper, the midplane gas density is taken

to be the same as this average value. The gas pressure is given by

P = ρg RT

µ
. (9)

282 DE LA FUENTE MARCOS, BARGE, AND DE LA FUENTE MARCOS

In this work we are interested in disks associated with T Tauri stars. As an example, for the
circumstellar disk around T Tauri N [14] the temperature T10AU = 26+34

−13 K, p is in the range
0.5–2.0, and q in the range 0.4–0.75. The probability that p ≥ 1.5 is 65%. The physical
parameters used in the rest of the paper are derived from the following standard model of
the nebula: a thin disk in which the surface densities (both for gas and for particles) and
the temperature are given by the decreasing power laws r−p (p = 3/2) and r−q (q = 1/2),
respectively. These are plausible values according to the observational results pointed out
above. At 1 AU from the central star, the surface densities are set to 17,000 kg m−2 for
the gas (σg) and to 200 kg m−2 for the particles (σp), whereas the temperature is assumed
equal to 280 K. The spatial density of the nebular gas at the equatorial plane is given by
ρg = 1.36 × 10−6 (r/AU)−11/4 kg m−3, with ρg = σg/2H . The density of the solid material
is set to 2000 kg m−3.

On the other hand, the small perturbation to the radial force due to pressure support is
[16]

ψ = −
(

1

2ρgr�2

)
∂ P

∂r
(10)

= (p + q/2 + 3/2)RTo

2r2
o �2

oµ

(
r

ro

)(1−q)

.

Therefore, the Cartesian components of the velocity of the gas, assuming initial unperturbed
circular Keplerian flow, are now

V g
X = −(1 − ψ)�Y,

(11)
V g

Y = (1 − ψ)�X,

where X , Y are the Cartesian coordinates in a frame of reference at rest and centered on the
disk’s host star. The reference surface mass density in terms of the global disk parameters
is given by

σo =
(

2 − p

2πr2
o

)(
RD

ro

)p−2

MD, (12)

where RD and MD are the radius and mass of the disk, respectively. If the protoplanetary
disk has a certain mass, then another effect to include in the calculations is the self-gravity
of the disk. If we consider a thin disk, the potential is given by

V (r) = −G

r

∫ 2π

0

∫ RD

R∗

σ(r ′)r ′dr ′dφ′√
1 + (

r ′
r

)2 − 2 r ′
r cos φ′

, (13)

where R∗ is the stellar radius. After some algebra, the radial force (assuming symmetry) is
given by

� = �

∫ RD

R∗

[
K (k) − 1

4
W

(
r ′

r
− r

r ′

)
E(k)

]
kσ(r ′)

√
r ′ dr ′, (14)

PROTOPLANETARY DISKS: PARALLEL COMPUTING 283

where k2 = 4rr ′/(r + r ′)2, W = k2/(1 − k2), � = G/r3/2, and

K (k) =
∫ 1

0

dx√
(1 − x2)(1 − k2x2)

, (15)

E(k) =
∫ 1

0

√
1 − k2t2

1 − t2
dt. (16)

As a particular case, if we consider σ(r) = σo/r3/2 the radial force is

� = Gσo

r3/2

∫ RD

R∗

[
K (k) − 1

4
W

(
r ′

r
− r

r ′

)
E(k)

]
kr ′ dr ′. (17)

This evaluation is very time-consuming and thus from a computational point of view it
is better to fit the variation of the force across the disk by a power-law expression of the
form � ∝ rγ , where γ ≈ 2.42. As for the gas, to calculate the angular velocity of the
disk we need to take into account the force contributions from both the central star, mass
Mo, and the disk itself. Evaluating the gravitational contribution of the disk using elliptic
integrals is straightforward [17], but computationally time consuming and not well suited
for parallelization. For computational convenience we adopt the approximation (for the
star–disk system)

�(r) =
[

G M(r)

r3

]1/2

, (18)

where

M(r) = Mo + 2π

∫ r

0
σ r dr. (19)

This is equivalent to treating the disk mass as being distributed spherically when the gravi-
tational force is calculated [15]. In our case

M(r) = Mo + 2πσo

∫ r

0
r−3/2 r dr = Mo + 4πσor1/2. (20)

After substituting (20) into (18) we can easily find an approximate value for the angular
velocity of the disk.

4.2. Vortex Velocity Field

In principle, one can argue that differentially rotating fluid systems such as circumstel-
lar disks can produce vorticial motions and hence vortices could be important at some
level. However, the exact mechanism by which vorticity is produced is still unknown. The
circulation (vorticity) of a flow with a velocity field is defined as

ω = ∇ × Vg. (21)

284 DE LA FUENTE MARCOS, BARGE, AND DE LA FUENTE MARCOS

The Navier–Stokes equations of the flow (see, e.g., [18]) take the form

∂Vg

∂t
+ (Vg∇)Vg = − 1

ρg
∇ P + ηg

ρg
∇2Vg − G M�

r
r3

, (22)

∇Vg = 0, (23)

where P is the gas pressure. Taking the curl of (22),

∂ω

∂t
+ (Vg∇)ω = (ω∇)Vg − ∇ 1

ρg
× ∇ P + ηg

ρg
∇2ω. (24)

The second term on the right-hand side of Eq. (24) is a source term for the vorticity.
This term is nonzero if P = P(ρg, T) (baroclinic flow) and it vanishes if P = P(ρg)

(barotropic flow). In general, vorticity can be generated by the nonalignment of ∇1/ρ with
∇ P (baroclinic instability). The last term on the right-hand side of Eq. (24) is respon-
sible for the viscous dissipation of the vorticity. In the absence of dissipation (inviscid
fluid, ηg = 0) and for a barotropic flow, the flux of vorticity across a material surface is a
conserved quantity (Kelvin’s circulation theorem; see, e.g., [18]). If the flow is not exactly
barotropic (e.g., as a result of reprocessing of stellar photons), then vorticity can be generated
directly.

Under the approximations considered in this work, a steady vorticial velocity field should
be a solution of the incompressible, two-dimensional Euler equation and it should approach
the standard Keplerian velocity field outside the vortex. Following [4], let us consider the
motion of a solid particle near a vortex located at a distance ro from the Sun. The motion
of the dust particle in an inertial frame of reference (X, Y) centered on the Sun under the
assumptions considered in this paper is given by Eq. (1). For convenience, let us consider
an additional frame of reference centered at the vortex and rotating with constant angular
velocity �o = √

G M�/r3
o , (x, y). This noninertial, Cartesian frame of reference is such

that the y axis points in the direction opposite to that of the Sun. In the inertial frame of
reference, X = r cos θ, Y = r sin θ and in terms of the variables x and y centered on a point
(ro, θo) (the vortex) rotating with the disk,

r = ro + y, (25)

x = r(θ − θo) = r(θ − �ot). (26)

Hence

X = (ro + y) cos

(
θo + x

r

)
, (27)

Y = (ro + y) sin

(
θo + x

r

)
. (28)

In terms of these variables the velocities can be written

Ẋ = ẏ cos

(
θo + x

r

)
− �v(ro + y) sin

(
θo + x

r

)
, (29)

Ẏ = ẏ sin

(
θo + x

r

)
+ �v(ro + y) cos

(
θo + x

r

)
, (30)

PROTOPLANETARY DISKS: PARALLEL COMPUTING 285

where �v = �o + ẋ/r − x ẏ/r2. Using Eqs. (27) and (28), the expressions for the velocity
become

Ẋ = −�oY + ẏ

r
X − (�v − �o)Y, (31)

Ẏ = �o X + ẏ

r
Y + (�v − �o)X. (32)

These equations must approach the standard expressions,

(Vg)x = Ẋ = −�Y, (33)

(Vg)y = Ẏ = �X, (34)

at large distances from the vortex. They describe the Keplerian, axisymmetric velocity
field of the unperturbed (by vortical turbulence) gas. Under the approximations consid-
ered in this work, a steady vorticial velocity field should be a solution of the incom-
pressible, two-dimensional Euler equation as well as approach the standard Keplerian ve-
locity field outside the vortex. In the rotating frame of reference, our choice of vorticial
field is

ẋ = −3

2
�o y − 3

f 2 − 1
�o y exp

[
− (x2 + hy2)

2R2

]
, (35)

ẏ = 3

2

1 + f 2

f (f 2 − 1)
�ox exp

[
− (x2 + hy2)

2R2

]
, (36)

where h = 2 f/(1 + f 2) and f is a parameter of the model. As stated before, this velocity
field approaches the standard behavior (ẋ = −3/2�o y, ẏ = 0) outside the vortex. Inside
the vortex, the above equations approach

ẋ = −3

2
�o y

1 + f 2

f 2 − 1
, (37)

ẏ = 3

2
�ox

1 + f 2

f (f 2 − 1)
. (38)

These produce streamlines which are Keplerian ellipses with aspect ratio f = a/b (a, b are
the semi-axes in the x and y directions respectively). If f approaches 1 we obtain a circular
vortex, if f → ∞ we have an infinitely elongated vortex.

If we take into account Eqs. (31), (32), (35), (36), the velocity of the gas around the vortex
becomes

(Vg)x = −�oY

(
1 − 3

2
y/ro

)
+ � f

(
2

h
x X + 2yY

)
Ke, (39)

(Vg)y = �o X

(
1 − 3

2
y/ro

)
+ � f

(
2

h
xY − 2y X

)
Ke, (40)

where � f = (3/2)(�o/r)(1/ f 2 − 1) and Ke = exp[−(x2 + hy2)/2R2]. To the first order,
Eqs. (39) and (40) converge to the standard expressions (33) and (34) in the neighborhood of

286 DE LA FUENTE MARCOS, BARGE, AND DE LA FUENTE MARCOS

the vortex. Besides, following Godon and Livio [19, 20], we assume that cyclonic vortices
dissipate quickly, while anticyclonic vortices can survive in the flow for hundreds of orbits.
When more than one vortex is present, the anticyclonic vortices interact and merge together
to form larger vortices; hence our calculations are restricted to a single vortex going around
the Sun at a distance ro in a circular, Keplerian orbit. Godon and Livio [19] have shown
that the amplitude of the vortex behaves like A ∝ e−t/τ , where τ , the decay time, increases
as the viscosity decreases. This occurs because the last term in Eq. (24) is responsible for
the viscous dissipation of the vorticity. To simulate the dissipation of the vortex we consider
a time-dependent vortex radius given by

R = Roe−t/τ , (41)

where Ro is the initial value of the radius of the vortex. Godon and Livio [19] have shown
that the lifetimes of vortices are inversely proportional to the α parameter, 10–100 orbits
with α ≈ 10−4–10−3. In our calculations the characteristic size (or radius) of the vortex is
equal to the thickness of the nebula H and corresponds to the limit of subsonic motions.

In all the subsequent computations we scale lengths to the astronomical unit (the distance
from the Earth to the Sun), times to the year, and masses to 10 kg, approximately the mass
of a typical decimeter-sized particle.

5. THE PROGRAM

5.1. Integration Algorithm

Three different integration methods (Adams–Moulton, Runge–Kutta, and Bulirsch–Stoer)
were tested to compare their performance and accuracy. The Adams–Moulton fourth-order
predictor–corrector is a constant time-step integrator whose efficiency is low when the prob-
lem is stiff. In our case, this occurs when the particle starts to experience bulk perturbation.
Therefore, variable time-step integrators, based on the Runge–Kutta and the Bulirsch–Stoer
methods, were tested. For example, we used the fifth-order Cash–Karp Runge–Kutta in-
tegrator with an adaptative time step as described in Press et al. [21]. The Bulirsch–Stoer
scheme, which is widely used in celestial mechanics because it includes simulations of the
three-body problem [22, 23], proved to be the most appropriate and robust for our prob-
lem. The Bulirsch–Stoer method is the best-known way to obtain high-accuracy solutions
to ordinary differential equations with minimal computational effort. The accuracy of the
method was checked by integrating the system over a time scale of 105 yr, when the friction
drag was omitted. For this time interval, the energy was found to be conserved to better
than 10−9 and the angular momentum to better than 10−12.

5.2. Parallel Issues

The need to break up a problem to run it on a multicomputer requires an approach different
from that used in sequential programs. However, the extra programming effort required to
use a multicomputer can yield commensurate speedups. The parallelization of an algorithm
aims at attaining larger and larger N in the numerical representation of the real system; this
is important not only to improve the spatial resolution, but also to get much more meaningful
results, because a number of particles that is too low in comparison with the number of real
bodies gives rise to (in our case) an unphysical contrast of the vortex against the disk.

PROTOPLANETARY DISKS: PARALLEL COMPUTING 287

In general, an efficient parallelization means a data distribution to the processors, the so-
called domain decomposition (DD), that (1) distributes the numerical work as uniformly as
possible and (2) minimizes the data exchange among the processors for distributed memory
platforms like the Origin 2000. Moreover, such DD should be performed with a minimal
computational cost. In the numerical simulation of collisionless protoplanetary disks it is
relatively easy to deal with these tasks because of the noncollisional nature of the problem.
Furthermore, for large N the average time step for all the CPUs is very similar, which causes
a relatively homogeneous distribution of the workload (the number of calculations needed to
evaluate the acceleration of a particle). For these reasons, a simple parallelization scheme
was adopted, the master/slave approach. In summary, the particles start out on a master
node, which then sets up the virtual machine, farms out the data and work, and manages the
computational interaction among different CPUs. A copy of the disk quantities, including
the vorticial velocity field, is passed to each CPU. The particles are divided equally among
the CPUs, with the master getting any remaining particles. After a fixed time scale, the
CPUs send the results to the master node to generate a global output and update the particle
array. The use of the PVM message-passing library makes the code portable. The details of
our algorithm in a PVM framework are now discussed.

First NDISK2 calls PVMFMYTID() and PVMFPARENT(). The PVMFPARENT
call will return PVMNOPARENT if the task was not spawned by another PVM task.
If this is the case, then NDISK2 is the master and must spawn the other worker copies of
NDISK2. NDISK2 then reads the number of processes (CPUs) to use (Ncpu) and the number
of particles to include in the calculations (N). Each spawned process receives N/Ncpu
particles. The particles are distributed at random to the CPUs, i.e., without any correlation
with their spatial location. If Ncpu does not divide N evenly, then the master performs the
calculations on the remaining particles. Initial conditions are then generated and NDISK2
spawns Ncpu −1 copies of itself and sends each new task the data (arrays of positions,
velocities, and masses) to perform the calculations. The message contains the lengths of
the subarrays and the subarrays themselves. After the master spawns the worker processes
and sends out the subvectors, the master then computes its part of the calculations. After a
certain computing time scale the slave processes send their results to the master in order to
update the arrays (erase the noncaptured particles and create new ones) as well as generate
partial output and analyze application performance. The master process then receives the
results from the slave processes. Our PVMFRECV call uses a wildcard (−1) for the task
identification parameter. This indicates that a message from any task will satisfy the receiver.
Using the wildcard in this manner results in a race condition. In this case the race condition
does not cause a problem since it does not matter in which order we collect the partial arrays
from the workers. This is appropriate for noncollisional systems; in a general case, unless one
is certain that the race will not have an adverse effect on the program, race conditions should
be avoided. Once the master receives all local subarrays it performs an analysis of the partial
results generating some output (captured particles, averages of many interesting magnitudes,
etc.) and checks for particles well inside the orbit of the vortex. These particles can no longer
be captured by the vorticial structure; therefore they are eliminated from the calculations and
replaced by new particles initially located at the outer edge of the ring. After the output is
generated and the arrays are updated the master process transfers the new data to the worker
processes to continue the calculations. The loop continues repeating until the integration
time reaches the value of the total simulation time, an input variable. When the termination
condition is achieved the master process finishes all the worker processes and stops itself.

288 DE LA FUENTE MARCOS, BARGE, AND DE LA FUENTE MARCOS

A main problem with PVM-based parallel computing is that the standard software for
batch queue processing available on SGI Origin 2000 computers is not able to checkpoint
applications that use sockets; therefore, in case of hardware or software failure not caused
by the application itself, automatic restart is not possible. Fortunately, we have been able
to develop an internal checkpoint using the master process. Every time the master collects
results from the slaves, it performs a common dump on a special recovery file. In this way,
we can manually restart the simulation after a system failure without any further problems.

5.3. Performance

The good efficiency of the parallelization approach described above is basically shown by
three facts: (1) behavior of the relative speedup close to the ideal behavior (linear in Ncpu),
(2) rather negligible unbalancing of the workload, and (3) low parallelization overhead. The
computational speed has been calculated using the same test run with different numbers of
processors and we define the parallelization overhead as the CPU time needed by all the
instructions which would not execute in a sequential (single CPU) run. To benchmark our
code we use a relatively low particle number to minimize the impact on the other users of
the server. However, our conclusions do not really depend on the particle number as long
as the number of particles per CPU is greater than 100.

The relative CPU time for the same test run with 1200 particles is shown in Fig. 1. It
was computed by normalizing the CPU time for a given simulation with Ncpu proces-
sors to the CPU time for a sequential run. For N = 1200, it appears to be rather good

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

R
el

at
iv

e
C

P
U

 ti
m

e

CPUs

PERFORMANCE: SGI Origin 2000

FIG. 1. Relative CPU time for the same test run with 1200 particles.

PROTOPLANETARY DISKS: PARALLEL COMPUTING 289

for Ncpu ≤ 6 (i.e., N/Ncpu ≥ 200). For more than 6 CPUs, the performance starts to
degrade because the number of particles per CPU is too small. In principle, our calcula-
tions with 105 particles could use 103 CPUs (if available) without degrading the overall
performance.

The computational workload is well balanced among the CPUs, as pointed out above.
A natural way to quantify the load unbalancing is via the formula lu = (tmax − tmin)/〈t〉,
where tmax and tmin are, respectively, the maximum and the minimum CPU time spent by
the workers to perform a block of calculations and 〈t〉 is the average for the workers. This
load unbalancing is a time-dependent magnitude and it is always less than 15% for N/Ncpu
large enough (>40) and has an average value of about 5%.

The NDISK2 code has been run on a massively parallel computer: the SGI Origin 2400
at the Centro de Supercomputación Complutense, Universidad Complutense de Madrid.
This computer has 56 CPUs and 14 Gb of memory. However, the use of the PVM
message-passing library makes the code portable to other massively parallel comput-
ers (like the Cray T3E) and clusters. Results from NDISK2 have been checked against
data generated by its predecessor, the sequential code NDISK1 [24]. As expected, a
small difference has been found because of the variation in floating-point roundoff
errors.

5.4. MPI vs PVM

PVM uses mainly the concept of one program being the master and it then starts up
slave processes on other nodes (hosts) that do all the work [25] (virtual machine concept).
The slaves communicate back and forth with the master but rarely (never in our case)
with each other. MPI on the other hand uses the concept of all processes running the
same executable with the program doing different things depending on which process it is
[25]. PVM can also utilize the SPMD (single program, multiple data) paradigm by using
dynamic groups. PVM contains resource management, load balancing, and process control
primitives but MPI is primarily concerned with messaging. PVM favors portability over
performance and provides robust fault tolerance. MPI is more susceptible to faults and
favors performance over flexibility. To compare both libraries we implemented another
version of NDISK2 that uses MPI instead of PVM. Although MPI’s memory management
seems to be slightly more efficient, the overall performance is lower. In general, and for the
particular problem considered in this paper, the PVM version is about 1/3 faster than the
equivalent MPI version. As expected, a small difference has been found in the final results
from both versions because of the variation in floating-point roundoff errors. From a strictly
computational standpoint, when a large difference in performance is found it should be
understood. As pointed out before, the version of PVM running on SGI computers has been
both optimized and improved. Libpvm provides a set of functions for packing types of data
into messages and recovering it at the other end. Any primitive data type can be packed into
a message in one of several encoding formats. The two most commonly used formats pack
data into “raw” (host native) and “default” (XDR) formats. In our case the PvmDataRaw
mode has been used. However, the difference in PVM and MPI performance is so large
because our application is the only one using PVM and running on the SGI Origin 2000
of the Centro de Supercomputación Complutense. A large number of processes that use
MPI cause unnecessary blocking and synchronization overheads, therefore the hardware
environment favors PVM.

290 DE LA FUENTE MARCOS, BARGE, AND DE LA FUENTE MARCOS

6. RESULTS

Finally, we discuss representative simulation results. Further applications of this model
to large-scale turbulent structures in protoplanetary disks will be presented elsewhere. The
simulation described in this paper has been used extensively to study dust capture by vortices.
Color scale figures are available in the electronic version of the article only.

Figure 2 shows the instantaneous distribution of particles at four different times for a
representative simulation. In this calculation we have used 36 CPUs on an Origin 2000
with PVM. It includes a realistic, exponentially decaying vortex with f = 4. The number
of dust particles is N = 400,000, and they were distributed uniformly and randomly in the
computational domain, 3.8–5.8 AU, inner/outer radius. The anticyclonic vortex stretches
with time and follows a circular orbit with radius 5.2 AU. The top left panel shows the
distribution of dust particles in the disk after 20 yr (about two orbital periods). The same

FIG. 2. Evolution of a protoplanetary disk that harbors a realistic vortex including decay and f = 4. The
vortex is clearly visible through the sequence. The initial radius of the vortex is 0.37 AU. After 21 vortex periods
the radius is 0.17 AU. The number of dust particles is 400,000, and they initially were distributed uniformly and
randomly in the computational domain. Top left panel: 20 yr. Top right panel: 100 yr. Bottom left panel: 180 yr.
Bottom right panel: 260 yr.

PROTOPLANETARY DISKS: PARALLEL COMPUTING 291

FIG. 3. Tilted view of the disk after 260 yr. The increase in particle density inside the vortex is clearly visible
in the figure. This figure corresponds to Fig. 2, bottom right panel.

distribution after 100 yr is shown in the top right panel. The bottom left panel corresponds
to 180 yr and the bottom right to 260 yr (about 25 orbits). It is rather clear from the se-
quence that starting from a uniform and random distribution in the disk, the dust particles
concentrate inside the vortex with time. The efficiency of the capture-in-vortex process is a
function of the ratio of the particle’s response time against drag to its orbital period. After
25 orbits the size distribution inside the vortex is clearly different from the size spectrum
in the disk. Figure 3 shows an artificially tilted view of the disk after 260 yr. For conve-
nience, the size of the particles is represented as a third dimension. The local increase in
particle density inside the vortex is clear from the figure. A detailed view of the vortex in the
previous figures appears in Fig. 4, with the more massive captured particles preferentially
located at the vortex core and the lightest particles more widely distributed. In our case,
parallel computing with PVM allows for increased performance as well as particle number.
Decreasing the cost of the simulation in terms of CPU time enables us to survey the free-
parameter space of the model (f , particle size, disk mass, vortex location, etc.) in detail.
On the other hand, increasing the particle number and using visualization tools like Ad-
vanced Visual System’s AVS/Express make the interpretation of the results easier.

292 DE LA FUENTE MARCOS, BARGE, AND DE LA FUENTE MARCOS

FIG. 4. Detailed view of the vortex in the disk after 260 yr. Stratification occurs inside the vortex with the
smallest particles widely distributed and the larger particles more concentrated towards the vortex core (color scale
is only available in the electronic version of the paper). This figure corresponds to Fig. 2, bottom right panel.

7. CONCLUSIONS

We have developed a parallel code for noncollisional simulation of the dynamical evolu-
tion of the solid material in a protoplanetary disk in which long-lived, large-scale vorticial
structures perturb the motion of dust grains. Thus it has been possible to reduce CPU time
and increase code performance. This enables us to run simulations with a large number
of particles (N ∼ 105–106) in nonprohibitive CPU times. NDISK2 is written in Fortran
and designed to run on parallel computers using both the PVM and MPI message-passing
libraries. For our particular problem—the dynamics of dust in a protoplanetary disk that
includes a giant gaseous vortex—PVM is in general more efficient (up to 30% faster).

ACKNOWLEDGMENT

C.F.M. and R.F.M. thank the Department of Astrophysics of the Universidad Complutense of Madrid (UCM)
for providing excellent computing facilities. The computations described in this paper were performed on the SGI

PROTOPLANETARY DISKS: PARALLEL COMPUTING 293

Origin 2000 of the Centro de Supercomputación Complutense (CSC) through the UCM project “Dinámica Estelar
y Sistemas Planetarios” (CIP 454) under the supervision of Dr. M. Rego Fernández. We thank Rafael López and
Luis Padilla from the CSC for advice and support during the completion of this work. To prepare this paper, we
used the SIMBAD database operated at CDS, Strasbourg, France, the ASTRO-PH e-print server, and the NASA
Astrophysics Data System.

REFERENCES

1. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (Institute of Physics Publishing,
Bristol/Philadelphia, 1988).

2. P. Barge and J. Sommeria, Did planet formation begin inside persistent gaseous vortices? Astron. Astrophys.
295, L1 (1995).

3. P.-H. Chavanis, Trapping of dust by coherent vortices in the solar nebula, Astron. Astrophys. 356, 1089
(2000).

4. C. de la Fuente Marcos and P. Barge, The effect of long-lived vortical circulation on the dynamics of dust
particles in the mid-plane of a protoplanetary disc, Mon. Not. R. Astron. Soc. 323, 601 (2001).

5. G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM: Parallel Virtual
Machine, A Users’ Guide and Tutorial for Networked Parallel Computing (MIT Press, Cambridge, MA,
1994).

6. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing
Interface (MIT Press, Cambridge, MA, 1994).

7. J. Mo, F. Romelfanger, R. J. Hanisch, D. C. Redding, S. Sirlin, and A. Boden, Implementation of an optical
prescription retrieval code using PVM (parallel virtual machine) in a mixed architecture network, in Astro-
nomical Data Analysis Software and Systems V, ASP Conference Series, edited by G. H. Jacoby and J. Barnes
(1996), Vol. 101.

8. A. F. Boden, D. C. Redding, R. J. Hanisch, and J. Mo, Massively parallel spatially-variant maximum likelihood
image restoration, in Astronomical Data Analysis Software and Systems V, ASP Conference Series, edited by
G. H. Jacoby and J. Barnes (1996).

9. P. M. Ricker, S. Dodelson, and D. Q. Lamb, Cosmos: A hybrid N -body/hydrodynamics code for cosmological
problems, Astrophys. J. 536, 122 (2000).

10. H. R. Viturro and D. D. Carpintero, Parallelized tree-code for clusters of personal computers, Astron. Astrophys.
Suppl. 142, 157 (2000).

11. S. J. Weidenschilling, Aerodynamics of solid bodies in the solar nebula, Mon. Not. R. Astron. Soc. 180, 57
(1977).

12. V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Israel
Program for Scientific Translations, Jerusalem, 1972).

13. P. Kroupa, G. Gilmore, and C. A. Tout, The effects of unresolved binary stars on the determination of the
stellar mass function, Mon. Not. R. Astron. Soc. 251, 293 (1991).

14. R. L. Akeson, D. W. Koerner, and E. L. N. Jensen, A circumstellar dust disk around T Tauri N: subarcsecond
imaging at lambda = 3 millimeters, Astrophys. J. 505, 358 (1998).

15. D. N. C. Lin and J. E. Pringle, The formation and initial evolution of protostellar disks, Astrophys. J. 358, 515
(1990).

16. J. N. Cuzzi, A. R. Dobrovolskis, and J. M. Champney, Particle–gas dynamics in the midplane of a protoplan-
etary nebula, Icarus 106, 102 (1993).

17. J. Binney and S. Tremaine, Galactic Dynamics (Princeton Univ. Press, Princeton, NU, 1987).

18. D. J. Acheson, Elementary Fluid Dynamics (Oxford Univ. Press, Oxford, 1990).

19. P. Godon and M. Livio, Vortices in protoplanetary disks, Astrophys. J. 523, 350 (1999).

20. P. Godon and M. Livio, The formation and role of vortices in protoplanetary disks, Astrophys. J. 537, 396
(2000).

21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge Univ. Press,
Cambridge, UK, 1992).

294 DE LA FUENTE MARCOS, BARGE, AND DE LA FUENTE MARCOS

22. R. Bulirsch and J. Stoer, Numerical treatment of ordinary differential equations by extrapolation methods,
Numer. Math. 8, 1 (1966).

23. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York, 1980).

24. C. de la Fuente Marcos and R. de la Fuente Marcos, On the dynamics of dust grains in a hierarchical
environment. I. Binary case, Earth, Moon Planets 81, 145 (1998).

25. G. A. Geist, J. A. Kohl, and P. M. Papadopoulous, PVM and MPI: A comparison of features, Calculateurs
Paralleles 8, page (1996).

	1. INTRODUCTION
	2. HARDWARE
	3. PARALLEL PROGRAMMING WITH PVM
	4. PHYSICAL MODEL
	5. THE PROGRAM
	FIG. 1.

	6. RESULTS
	FIG. 2.
	FIG. 3.
	FIG. 4.

	7. CONCLUSIONS
	ACKNOWLEDGMENT

